Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Technol Biotechnol ; 62(1): 89-101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601968

RESUMO

Research background: An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol. Experimental approach: The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast Saccharomyces cerevisiae (30 g/L). The second stage was the pretreatment of ESBC with dilute sulfuric acid to release fermentable sugars. The resulting liquid hydrolysate of ESBC was used in the third stage as a nutrient medium for arabitol production by non-Saccharomyces yeasts (Spathaspora passalidarum CBS 10155 and Spathaspora arborariae CBS 11463). Results and conclusions: The obtained results show that the efficiency of bioethanol production increased with increasing temperature and prolonged residence time in the integrated bioreactor system. The maximum bioethanol production efficiency (87.22 %) was observed at a time of 60 min and a temperature of 36 °C. Further increase in residence time (above 60 min) did not result in the significant increase of bioethanol production efficiency. Weak acid hydrolysis was used for ESBC pretreatment and the highest sugar yield was reached at 200 °C and residence time of 1 min. The inhibitors of the weak acid pretreatment were produced below bioprocess inhibition threshold. The use of the obtained liqiud phase of ESBC hydrolysate for the production of arabitol in the stirred tank bioreactor under constant aeration clearly showed that S. passalidarum CBS 10155 with 8.48 g/L of arabitol (YP/S=0.603 g/g and bioprocess productivity of 0.176 g/(L.h)) is a better arabitol producer than Spathaspora arborariae CBS 10155. Novelty and scientific contribution: An innovative integrated bioprocess system for the production of bioethanol and arabitol was developed based on the biorefinery concept. This three-stage bioprocess system shows great potential for maximum use of SBC as a feedstock for bioethanol and arabitol production and it could be an example of a sustainable 'zero waste' production system.

2.
Mar Drugs ; 22(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248671

RESUMO

The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom Nitzschia sp. S5 were optimised to obtain a high biomass concentration. The effect of main macronutrients on growth kinetics and cell composition was also studied. Silicon had the most significant effect on diatom growth during batch cultivation. The concentration of biomass increased 5.45-fold (0.49 g L-1) at 1 mM silicon concentration in modified growth medium compared to the original Guillard f/2 medium. Optimisation of silicon, nitrogen, and phosphorus quantities and ratios further increased biomass concentration. The molar ratio of Si:N:P = 7:23:1 mol:mol:mol yielded the highest biomass concentration of 0.73 g L-1. Finally, the fed-batch diatom cultivation of diatom using an optimised Guillard f/2 growth medium with four additions of concentrated macronutrient solution resulted in 1.63 g L-1 of microalgal biomass. The proteins were the most abundant macromolecules in microalgal biomass, with a lower content of carbohydrates and lipids under all studied conditions.


Assuntos
Diatomáceas , Microalgas , Biomassa , Silício , Suplementos Nutricionais , Nitrogênio , Fósforo
3.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365716

RESUMO

In the present study, water extracts from banana and red beetroot peels were evaluated as a potential source of biologically active compounds for the formulation of edible films. Using spectrophotometric and HPLC-DAD methodologies, banana peel extract was found to be a valuable source of dopamine (156.08 mg L-1), while red beetroot peel extract was abundant in red-violet pigments betacyanins (90.1 mg betanin L-1). The biological activity of the extracts was studied by determining their effects on macromolecular models, including DNA (plasmid phiX RF1 DNA), protein (bovine serum albumin), and lipid (linoleic acid) models, as well as on continuous human cell lines of colon cancer Caco-2 and hepatocellular liver cancer Hep G2 at concentrations of 0.2 and 1 mg mL-1. Results showed that the extracts had no adverse effects and both were further used for the formulation of edible films using alginate in combination with three types of plant proteins-rice, peanut, and pumpkin. In general, edible films based on banana peel extract were characterized by better bioactive properties compared with the films based on red beetroot peel extract. The addition of peanut proteins into the formulations resulted in the most desirable bioactive profile of the formulated edible films, including total phenolic content and antioxidant capacity. Aside from the control sample prepared only with the alginate, the highest dopamine content was determined in the film with incorporated pumpkin proteins (10.72 mg g-1 dw), while the sample prepared with peanut proteins was richest in betacyanins (175.58 mg betanin g-1 dw).

4.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144601

RESUMO

Paramylon is a valuable intracellular product of the microalgae Euglena gracilis, and it can accumulate in Euglena cells according to the cultivation conditions. For the sustainable production of paramylon and appropriate cell growth, different bioreactor processes and industrial byproducts can be considered as substrates. In this study, a complex medium with corn steep solid (CSS) was used, and various bioreactor processes (batch, fed batch, semicontinuous and continuous) were performed in order to maximize paramylon production in the microalgae Euglena gracilis. Compared to the batch, fed batch and repeated batch bioprocesses, during the continuous bioprocess in a stirred tank bioreactor (STR) with a complex medium containing 20 g/L of glucose and 25 g/L of CSS, E. gracilis accumulated a competitive paramylon content (67.0%), and the highest paramylon productivity of 0.189 g/Lh was observed. This demonstrated that the application of a continuous bioprocess, with corn steep solid as an industrial byproduct, can be a successful strategy for efficient and economical paramylon production.


Assuntos
Euglena gracilis , Microalgas , Reatores Biológicos , Euglena gracilis/química , Glucanos , Glucose
5.
J Fungi (Basel) ; 8(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628786

RESUMO

Non-conventional yeasts are increasingly being investigated and used as producers in biotechnological processes which often offer advantages in comparison to traditional and well-established systems. Most biotechnologically interesting non-conventional yeasts belong to the Saccharomycotina subphylum, including those already in use (Pichia pastoris, Yarrowia lypolitica, etc.), as well as those that are promising but as yet insufficiently characterized. Moreover, for many of these yeasts the basic tools of genetic engineering needed for strain construction, including a procedure for efficient genetic transformation, heterologous protein expression and precise genetic modification, are lacking. The first aim of this study was to construct a set of integrative and replicative plasmids which can be used in various yeasts across the Saccharomycotina subphylum. Additionally, we demonstrate here that the electroporation procedure we developed earlier for transformation of B. bruxellensis can be applied in various yeasts which, together with the constructed plasmids, makes a solid starting point when approaching a transformation of yeasts form the Saccharomycotina subphylum. To provide a proof of principle, we successfully transformed three species from the Schwanniomyces genus (S. polymorphus var. polymorphus, S. polymorphus var. africanus and S. pseudopolymorphus) with high efficiencies (up to 8 × 103 in case of illegitimate integration of non-homologous linear DNA and up to 4.7 × 105 in case of replicative plasmid). For the latter two species this is the first reported genetic transformation. Moreover, we found that a plasmid carrying replication origin from Scheffersomyces stipitis can be used as a replicative plasmid for these three Schwanniomyces species.

6.
Front Microbiol ; 13: 812457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308344

RESUMO

Brewers' spent grains (BSG) are a by-product of the brewing industry that is mainly used as feedstock; otherwise, it has to be disposed according to regulations. Due to the high content of glucose and xylose, after pretreatment and hydrolysis, it can be used as a main carbohydrate source for cultivation of microorganisms for production of biofuels or biochemicals like 2,3-butanediol or lactate. 2,3-Butanediol has applications in the pharmaceutical or chemical industry as a precursor for varnishes and paints or in the food industry as an aroma compound. So far, Klebsiella pneumoniae, Serratia marcescens, Clostridium sp., and Enterobacter aerogenes are being used and investigated in different bioprocesses aimed at the production of 2,3-butanediol. The main drawback is bacterial pathogenicity which complicates all production steps in laboratory, pilot, and industrial scales. In our study, a gram-positive GRAS bacterium Paenibacillus polymyxa DSM 742 was used for the production of 2,3-butanediol. Since this strain is very poorly described in literature, bacterium cultivation was performed in media with different glucose and/or xylose concentration ranges. The highest 2,3-butanediol concentration of 18.61 g l-1 was achieved in medium with 70 g l-1 of glucose during 40 h of fermentation. In contrast, during bacterium cultivation in xylose containing medium there was no significant 2,3-butanediol production. In the next stage, BSG hydrolysates were used for bacterial cultivation. P. polymyxa DSM 742 cultivated in the liquid phase of pretreated BSG produced very low 2,3-butanediol and ethanol concentrations. Therefore, this BSG hydrolysate has to be detoxified in order to remove bacterial growth inhibitors. After detoxification, bacterium cultivation resulted in 30 g l-1 of lactate, while production of 2,3-butanediol was negligible. The solid phase of pretreated BSG was also used for bacterium cultivation after its hydrolysis by commercial enzymes. In these cultivations, P. polymyxa DSM 742 produced 9.8 g l-1 of 2,3-butanediol and 3.93 g l-1 of ethanol. On the basis of the obtained results, it can be concluded that different experimental setups give the possibility of directing the metabolism of P. polymyxa DSM 742 toward the production of either 2,3-butanediol and ethanol or lactate.

7.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209036

RESUMO

Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h-1), had biomass productivity of 33.98 ± 0.02 mg L-1 day-1. Proteins were the most abundant macromolecule in the biomass (32.83-57.94%, g g-1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.


Assuntos
Anti-Infecciosos , Antioxidantes , Aspergillus niger/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biomassa , Candida/crescimento & desenvolvimento , Clorófitas , Ácidos Graxos Insaturados/química , Microalgas , Pigmentos Biológicos , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos Insaturados/farmacologia , Microalgas/química , Microalgas/crescimento & desenvolvimento , Oceanos e Mares , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia
8.
J Fungi (Basel) ; 7(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829221

RESUMO

Microbial lipids have similar fatty acid composition to plant oils, and therefore, are considered as an alternative feedstock for biodiesel production. Oleaginous yeasts accumulate considerable amounts of lipids intracellularly during growth on low-cost renewable feedstocks such as lignocellulosic biomass. In this study, we cultivated yeast Trichosporon oleaginosus on hydrolysate of alkaline pretreated corn cobs. Different process configurations were evaluated and compared, including separate hydrolysis and fermentation (SHF) with cellulase recycle and simultaneous saccharification and fermentation (SSF) in batch and fed-batch mode. At low enzyme loading, the highest lipid concentration of 26.74 g L-1 was reached in fed-batch SSF fed with 2.5% (g g-1) substrate. Batch SHF was conducted for four rounds with recycling the cellulase adsorbed on unhydrolyzed lignocellulosic biomass. Thirty percent of cellulase saving was achieved for rounds 2-4 without compromising productivity and lipid yield. The addition of Tween 80 to lignocellulosic slurry improved the hydrolysis rate of structural carbohydrates in pretreated lignocellulosic biomass. Furthermore, supplementing the growth medium with Tween 80 improved lipid yield and productivity without affecting yeast growth. Oleaginous yeast T. oleaginosus is a promising strain for the sustainable and efficient production of lipids from renewable lignocellulosic feedstock.

9.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771293

RESUMO

Various fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species (Mucor indicus DSM 2185, Paecilomyces variotii CBS 372.70, Myceliophthora thermophila CBS 663.74, Thielavia terrestris CBS 456.75, Botryosphaeria dothidea JCM 2738, Fusarium oxysporum f.sp. langenariae JCM 9293, and Fusarium verticillioides JCM 23107) and four nutrient media were used in the screening for effective lignocellulose degrading enzymes. From the seven tested fungi, F. oxysporum and F. verticilliodes, along with nutrient medium 4, were selected as the best medium and producers of lignocellulolytic enzymes based on the determined xylanase (>4 U mg-1) and glucanase activity (≈2 U mg-1). Nutrient medium 4 supplemented with pretreated corn cobs was used in the production of lignocellulolytic enzymes by sequential solid-state and submerged cultivation of F. oxysporum, F. verticilliodes, and a mixed culture of both strains. F. oxysporum showed 6 times higher exoglucanase activity (3.33 U mg-1) after 5 days of cultivation in comparison with F. verticillioides (0.55 U mg-1). F. oxysporum also showed 2 times more endoglucanase activity (0.33 U mg-1). The mixed culture cultivation showed similar endo- and exoglucanase activities compared to F. oxysporum (0.35 U mg-1; 7.84 U mg-1). Maximum xylanase activity was achieved after 7 days of cultivation of F. verticilliodes (≈16 U mg-1), while F. oxysporum showed maximum activity after 9 days that was around 2 times lower compared to that of F. verticilliodes. The mixed culture achieved maximum xylanase activity after only 4 days, but the specific activity was similar to activities observed for F. oxysporum. It can be concluded that both fungal strains can be used as producers of enzyme cocktails for the degradation of lignocellulose containing raw materials, and that corn cobs can be used as an inducer for enzyme production.

10.
Food Technol Biotechnol ; 59(4): 387-412, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136365

RESUMO

The underutilized biomass and different organic waste streams are nowadays in the focus of research for renewable energy production due to the effusive use of fossil fuels and greenhouse gas emission. In addition, one of the major environmental problems is also a constant increase of the number of organic waste streams. In a lot of countries, sustainable waste management, including waste prevention and reduction, has become a priority as a means to reduce pollution and greenhouse gas emission. Application of biogas technology is one of the promising methods to provide solutions for both actual energy-related and environmental problems. This review aims to present conventional and novel biogas production systems, as well as purification and upgrading technologies, nowadays applicable on a large scale, with a special focus on the CO2 and H2S removal. It also gives an overview of feedstock and the parameters important for biogas production, together with digestate utilization and application of molecular biology in order to improve the biogas production.

11.
World J Microbiol Biotechnol ; 36(8): 111, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32656603

RESUMO

High-quality environmentally-friendly bioplastics can be produced by mixing poly-L-lactate with poly-D-lactate. On an industrial scale, this process simultaneously consumes large amounts of both optically pure lactate stereoisomers. However, because optimal growth conditions of L-lactate producers often differ from those of D-lactate producers, each stereoisomer is produced in a specialised facility, which raises cost and lowers sustainability. To address this challenge, we metabolically engineered Lactobacillus gasseri JCM 1131T, a bioprocess-friendly and genetically malleable strain of homofermentative lactic acid bacterium, to efficiently produce either pure L- or pure D-lactate under the same bioprocess conditions. Transformation of L. gasseri with plasmids carrying additional genes for L- or D-lactate dehydrogenases failed to affect the ratio of produced stereoisomers, but inactivation of the endogenous genes created strains which yielded 0.96 g of either L- or D-lactate per gram of glucose. In this study, the plasmid pHBintE, routinely used for gene disruption in Bacillus megaterium, was used for the first time to inactivate genes in lactobacilli. Strains with inactivated genes for endogenous lactate dehydrogenases efficiently fermented sugars released by enzymatic hydrolysis of alkali pre-treated wheat straw, an abundant lignocellulose-containing raw material, producing 0.37-0.42 g of lactate per gram of solid part of alkali-treated wheat straw. Thus, the constructed strains are primed to serve as producers of both optically pure L-lactate and D-lactate in the next-generation biorefineries.


Assuntos
Ácido Láctico/metabolismo , Lactobacillus gasseri/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados/genética , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Hidrólise , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactobacillus gasseri/metabolismo , Lignina/metabolismo , Plasmídeos/genética
12.
Food Technol Biotechnol ; 57(2): 272-281, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31537976

RESUMO

This work investigates the methodology of producing a 3D-printed microreactor from the acrylic resin by PolyJet Matrix process. The PolyJet Matrix technology employs different materials or their combinations to generate 3D-printed structures, from small ones to complex geometries, with different material properties. Experimental and numerical methods served for the evaluation of the geometry and production of the microreactor and its hydrodynamic characterization. The operational limits of the single-phase flow in the microchannels, further improvements and possible applications of the microreactor were assessed based on the hydrodynamic characterization.

13.
Food Technol Biotechnol ; 57(1): 5-16, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31316272

RESUMO

Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.

14.
Food Technol Biotechnol ; 56(3): 289-311, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30510474

RESUMO

Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.

15.
Food Technol Biotechnol ; 56(2): 152-173, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30228791

RESUMO

Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the 'food or fuel' concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered.

16.
Biotechnol Biofuels ; 11: 79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588664

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMO) release a spectrum of cleavage products from their polymeric substrates cellulose, hemicellulose, or chitin. The correct identification and quantitation of these released products is the basis of MS/HPLC-based detection methods for LPMO activity. The duration, effort, and intricate analysis allow only specialized laboratories to measure LPMO activity in day-to-day work. A spectrophotometric assay will simplify the screening for LPMO in culture supernatants, help monitor recombinant LPMO expression and purification, and support enzyme characterization. RESULTS: Based on a newly discovered peroxidase activity of LPMO, we propose a fast, robust, and sensitive spectrophotometric activity assay using 2,6-dimethoxyphenol (2,6-DMP) and H2O2. The fast enzymatic assay (300 s) consists of 1 mM 2,6-DMP as chromogenic substrate, 100 µM H2O2 as cosubstrate, and an adequate activity of LPMO in a suitable buffer. The high molar absorption coefficient of the formed product coerulignone (ε469 = 53,200 M-1 cm-1) makes the assay sensitive and allows reliable activity measurements of LPMO in concentrations of approx. 0.5-50 mg L-1. CONCLUSIONS: The activity assay based on 2,6-DMP detects a novel peroxidase activity of LPMO. This activity can be accurately measured and used for enzyme screening, production, and purification, and can also be applied to study binding constants or thermal stability. However, the assay has to be used with care in crude extracts, because other enzymes such as laccase or peroxidase will interfere with the assay. We also want to stress that the peroxidase activity is a homogeneous reaction with soluble substrates and should not be correlated to heterogeneous LPMO activity on polymeric substrates.

17.
Food Chem ; 254: 115-121, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548430

RESUMO

The aim was to determine the mycotoxin transfer rate into beer during a semi-industrial production process and the effect of fungicide treatment in the field on mycotoxins concentrations in beer. To ensure the usual practical agronomical conditions, sample A was treated with fungicide Prosaro® 250, and sample B was infected with Fusarium culmorum spores, in order to obtain infected malt. Malt was produced using standard procedure and beer was produced in a semi-industrial unit. During fermentation measurement of sugars (maltotriose and maltose), glycerol and ethanol content was performed on a daily basis. Multiple toxins were determined in malt and beer. Deoxynivalenol (DON), its modified plant metabolite DON-3-glucoside (DON-glucoside), brevianamide F, tryptophol, linamarin, lotaustralin, culmorin (CUL), 15-hydroxy-CUL and 5-hydroyx-CUL were detected in all samples. Results indicate that F. culmorum infection did not influence the fermentation process or the alcohol concentration.


Assuntos
Cerveja/análise , Fermentação , Contaminação de Alimentos/análise , Micotoxinas/análise , Triticum/química , Triticum/microbiologia , Cerveja/microbiologia , Etanol/análise , Fungicidas Industriais/administração & dosagem , Fusarium/metabolismo , Glucosídeos/análise , Nitrilas , Esporos Fúngicos , Tricotecenos/análise , Triticum/crescimento & desenvolvimento
18.
Eng Life Sci ; 18(11): 768-778, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32624871

RESUMO

This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.

19.
Bioprocess Biosyst Eng ; 40(11): 1679-1688, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770369

RESUMO

Fossil fuels are still major energy sources, but the search for renewable energy sources has been encouraged. Bioethanol has been recognized as an alternative to fossil fuels and nowadays it represents more than 90% of the global biofuel production. Bioethanol production from raw sugar beet cossettes as a semi-solid substrate was studied. The study was carried out in the horizontal rotating tubular bioreactor (HRTB) with Saccharomyces cerevisiae as a microbial production strain. The impact of different combinations of HRTB operational parameters such as, rotation speed (5-15 min-1), rotation type [constant or interval (3-15 min h-1)] and working volume (ratio V W/V T = 0.2-0.7) on the bioethanol production was examined. In this study, the highest bioprocess efficiency parameters ([Formula: see text] = 0.47 g g-1, E = 87.36% and Pr = 0.618 g L-1 h-1) were observed at 0.20 V W/V T, interval rotation of 12 min h-1 and rotation speed of 15 min-1. It has to be pointed out that bioethanol production efficiency in the HRTB was on the similar level as observed by bioethanol production from the raw sugar beet juice. Naturally present microorganisms of sugar beet could have a significant impact on bioethanol production. Higher yeast inoculation rate could reduce contaminant activities and, consequently, the bioethanol production efficiency would be improved.


Assuntos
Beta vulgaris/metabolismo , Biocombustíveis , Reatores Biológicos , Etanol/metabolismo
20.
Bioprocess Biosyst Eng ; 38(6): 1103-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25601569

RESUMO

Heterotrophic cultivation of Euglena gracilis was carried out on synthetic (Hutner medium) and complex cultivation media in order to optimize production of ß-1,3-glucan (paramylon). For preparation of complex media, various industrial by-products (e.g., molasses, corn steep solid, yeast extract, and beef extract) were used with or without addition of pure compounds [glucose, galactose, fructose, lactose, maltose, sucrose, and (NH4)2HPO4]. Heterotrophic cultivation of E. gracilis was performed in Erlenmeyer flasks and additionally confirmed during research in the stirred tank bioreactor. The results clearly show that E. gracilis can easily metabolize glucose and fructose as carbon sources and corn steep solid as complex nitrogen and growth factors source for biomass growth and paramylon synthesis. Furthermore, it was also proved that addition of (NH4)2HPO4, beef extract, or gibberellic acid did not have positive effect on the biomass growth and paramylon synthesis. After optimization of complex medium composition and verification in the stirred tank bioreactor, it was concluded that medium composed of glucose (20 g/L) and corn steep solid (30 g/L) is the most suitable complex medium for industrial cultivation of E. gracilis and paramylon production.


Assuntos
Meios de Cultura/química , Euglena gracilis/citologia , Glucanos/biossíntese , Biomassa , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA